Q.P. Code - 50722

Second Year B.Sc. Degree Examination

SEPTEMBER/OCTOBER 2013

(Directorate of Distance Education)

(DSB 230) Paper II - MATHEMATICS

Time: 3 Hours

[Max. Marks: 90

Instructions to Candidates:

Answer any **SIX** full questions of the following choosing atleast **ONE** from each Part.

PART - A

- 1. (a) (i) Find the order and degree of differential equation $\frac{d^2y}{dx^2} + a^2x = 0$. 2
 - (ii) Show that $y = a \cos x + b \sin x$ is the solution of the differential equation $\frac{d^2y}{dx^2} + y = 0$.
 - (b) Solve $(x^2 y^2)dx = 2xy dy$.
 - (c) Solve $(2xy^2 y)dx + x dy = 0$.
- 2. (a) (i) Solve $P^2 + 2Px 3x^2 = 0$.
 - (ii) Find the general and singular solution of the equation $y = Px + \frac{a}{P}$. 2
 - (b) Solve $16x^2 + 2P^2y P^3x = 0$.
 - (c) Show that the family of parabolas $y^2 = 4a(x+a)$ is self orthogonal. 6

Q.P. Code - 50722

PART - B

3. (a) (i) Solve
$$[D^2+8D+16]y=0$$
.

(ii) Solve $[D^4+8D^2+16]y=\cos 3x+5$.

(b) Solve $(D^2-2D+5)y=e^x\cos 2x$.

5. (c) Solve the simultaneous equations
$$(D+7)x-y=0\\2x+(D+5)y=0$$
4. (a) (i) Evaluate $\lim_{x\to 0}\left(\frac{1}{x^2-1}-\frac{1}{x-1}\right)$.

(ii) Evaluate $\lim_{x\to 0}\left(\frac{1}{x}-\frac{1}{e^x-1}\right)$.

2. (b) Expand $\log(1+\sin x)$ upto x^4 using Maclaurin's series.

5. (c) State and prove Roll's theorem.

6. (a) (i) In a group G , if every element has its own inverse then prove that G is abelian.

(ii) Find the number of generators of the cyclic group of order 30.

(b) Prove that in a group G , $o(a)=o(a^{-1}) \forall a \in G$.

5. (c) State and prove Euler's theorem.

6. (a) (i) Solve $2x-3<5x+3<2x+3$.

(ii) For any two real numbers x and y show that $|x+y| \le |x|+|y|$.

(b) Find the order of the permutation φ and also find whether it is even or odd, where $\varphi=\begin{pmatrix}1&2&3&4&5&6&7&8&9&10\\5&9&6&3&1&4&2&10&8&7\end{pmatrix}$.

(c) Find the envelope of the family of lines $x\cos^3 \alpha + y\sin^3 \alpha = a$, where α is

a parameter.

Q.P. Code - 50722

PART - D

2

5

- Find the limit of the sequence $\frac{2n+3}{5n-4}$. 7. (a) Show that the sequence $\{x_n\} = n(n+1)$ is monotonic. 2 If the sequence $\{x_n\}$ converges to l and $\{y_n\}$ converges to m then show that $\{x_n + y_n\}$ converges to l + m. 5 6 Prove that every convergent sequence is bounded. Show that the series $\sum \frac{1}{n(n+1)}$ is converges to 1. 2 8. (a) Discuss the convergence of the series $1 + \frac{1}{3} + \frac{1}{9} + \frac{1}{27} + \cdots$. 2 (ii)
 - State and prove D'Alemberts ratio test. (b)
 - Find the sum to infinity of the series (c)

$$\frac{1}{1\cdot 3} + \frac{1}{2\cdot 5} + \frac{1}{3\cdot 7} + \cdots + \cos \infty$$